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Abstract—In this paper, we introduce a new class of functions called fuzzy completely € -irresolute functions between fuzzy topological
spaces and also in this paper, fuzzy € -open sets and fuzzy € -closed sets are used to define and investigate a new class of functions
called fuzzy completely weakly € -irresolute. Relationships between the new class and other classes of functionsare established.
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1 INTRODUCTION

VER since the introduction of fuzzy sets by Zadeh [20],

the fuzzy concepts has invaded almost all branches of
Mathematics. The concept of fuzzy topological space has in-
troduced by chang [5] in 1968. Since then many fuzzy topolo-
gists have extended various notions in classical topology to
fuzzy topological spaces. In this paper, fuzzy € -open sets and
fuzzy € -closed sets are used to define and investigate a new
class of functions called fuzzy completely weakly € -
irresolute. Relationships between the new class and other clas-

ses of functions are established. Throughout this paper X

and Y are always fuzzy topological spaces. The class of all
fuzzy sets on a universe X will be denoted by |*. Let A be
a fuzzy subset of a space X . The fuzzy closure of A, fuzzy
interior of A, fuzzy O -closure of A and the fuzzy ¢ -interior

of A are denoted by CI(A), Int(A), Cls(A)and
Int; (A) respectively.

A fuzzy subset A of space X is called fuzzy regular open [1]
(resp. fuzzy regular closed) if A= Int(CI(A)) (resp.

A =CI(Int(A)). The fuzzy & -interior of fuzzy subset A of
X is the union of all fuzzy regular open sets contained in A. A
fuzzy subset A is called fuzzy & -open [12] if A = Int;(A)).

The complement of fuzzy O -open set is called fuzzy O -

closed (i.e,, A=Cl;(A))
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2 PRELIMINARIES

Now, we introduce some basic notions and results that are
used in the sequel.

Definition 2.1. A fuzzy topology on a nonempty set X is a
family O of fuzzy subsets of X which satisfies the following
three conditions:

()0,1€ 5,

(i) Ifg h € &, theirgAh € O

(iii) f, € Oforeachiel, then \/ f, €0.
iel

The pair (X,7) s called a fuzzy topological space [5].

Definition 2.2. Members of O are called fuzzy open sets [5]
and complements of fuzzy open sets are called fuzzy closed

sets [5], where the complement of a fuzzy set A, denoted by

A® is1-A.

Definition 2.3. [15] The fuzzy subset X, of a non-empty set
X, which X € X and 0 < a <1defined by

><a(p)={a T p=x

is called a fuzzy point in X with suppost X and value a.

Oif p=x

The fuzzy point X, is called point.

Definition 2.4. [15] Let A be fuzzy setin X and X, a fuzzy

pointin X. we say that X, < 4.
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Definition 2.5. [9] A fuzzy set A of a fuzzy topological space

X is said to be fuzzy ¥ -openif A <Cl

(Int A) v Int(Cl 1)) where Cl(A)=A{u:u> A, u

is fuzzy closed in X} and Int(A) = A{u: u< A, u is fuzzy
openin X}. If A is fuzzy y-open, then 1— A is fuzzy -

closed.
Definition 2.6. [3] Let f : X —Y be a mapping. Then f is

called a fuzzy y -irresolute mapping if f (V) is a fuzzy -

opensetin X for each fuzzy y -openset in Y.

Definition 2.7. [17] A fuzzy set A of a fuzzy topological space
X is said to be fuzzy €-open (resp. regular open [1]) if
A <Cl(Int;2) v Int(Cl;A)) (resp. 4 = Int(CI(1))) where
ClA)=nA{u:u>A,u
INt(A) = A{u: <A, 1 is fuzzy open in X}. If Ais fuzzy

is fuzzy closed in X} and

€ -open, then 1— A is fuzzy € -closed.

Definition 2.8. [17] Let X be a fuzzy topological space and
A be any fuzzy setin X . The fuzzy € -closure of 4 in X is
denoted by eCl(A4) as follows:

eCl(u)=n{A:A>u, A is a fuzzy € -closed set of X}.
Similarly we can define elnt(A).

Remark 2.9. For a fuzzy set 4 of X , 1—elnt(1) = e Cl
@-A4).

Remark 2.10. A fuzzy set A is fuzzy € -closed if and only if
eCl(1)=41.

Definition 2.11. [15] A fuzzy set A in X is said to be (-
coincident with a fuzzy set B, denoted by AQB, if there ex-
ists X€ X such that A(X)+B(X)>1. It is known that
A< Bif and only if A and 1—Bare not q -coincident, de-

noteby A a (1-B).
Definition 2.12. [15] A fuzzy set B is a quasi neighbourhood

(g -neighbourhood, for short) of A if and only if there exists a
fuzzy open set U such that AqU < B.

Definition 2.13. A fuzzy set A in X is said to be a €-( -
neighbourhood (€-( -nbd, for short) of X, if and only if

there a fuzzy € -openset V in X suchthat X qV < A.

Theorem 2.14. [15] In a fuzzy topological space X, Abe a
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fuzzy €-closed (resp. fuzzy €-open) if and only if

A =eCI(1) (resp. A =elInt(A)).

Definition 2.15. [3] Let X and Y be two fuzzy topological
spaces. Let A€ 1%, e |’ . Then f(A)isa fuzzy subset of
Y, defined by f(4):Y —[0]]

sup A(x) if fE({y}) =4
xef 14y

0 it f7({y})=¢

X, defined by

F(A(Y) =

and f_l(,u) is a fuzzy subset of

() () = u(f ().

Lemma 2.16. [1] Let f : X —Y be a function and {1_} be a

family of fuzzy sets of Y , then

o f(Ja)=Uf "),
(@ (4 =7 (4)-

Lemma 2.17. [1] For functions f;: X, —>Y,, and fuzzy sets
A of Y., i=1,2 wehave (f,x f,) (4 x4,) = f'(1)x

1
f, (%)
Lemma 2.18. [1] Let g : X — X xY be the graph of a func-
tion T :X —Y. Then, if A is a fuzzy set of X and pisa

fuzzy setof Y. g (Axu)=AA 7 (u).

Definition 2.19. A functions f : X — Y is said to be:
1. fuzzy completely continuous [4] if f _l(\/ ) is fuzzy regular

openin X for each fuzzy opensetV in Y ;

2. fuzzy €-irresolute [16] if f (V) is fuzzy €-openin X
for each fuzzy € -openset V inY ;

3. fuzzy € -continuous [17] if f (V) is fuzzy € -openin X
for each fuzzy openset V in Y ;

4. fuzzy totally continuous [11] if f _l(\/ ) is fuzzy clopen in
X for each fuzzy subset V in Y ;

5. fuzzy open [19] if (V) is fuzzy open setin Y for each
fuzzy openset V in X ;

6. fuzzy almost open [13] if T (V) is fuzzy regular open set in
Y for each fuzzy regular openset V in X ;

7. fuzzy strongly continuous [2] if f 71(\/ ) is fuzzy open fuzzy
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closed setin X for every fuzzy set 4 inY.

Definition 2.20. A function f :X —VYis called fuzzy e-
open [16] (resp. fuzzy pre- € -open) if the image of each fuzzy
open (resp. fuzzy € -open) setin X is fuzzy € -openin Y .

Definition 2.21. [2] A function f :X — Y is called fuzzy

completely continuous if f710/ ) is fuzzy regular open in

X for every fuzzy openset V of Y .

Definition 2.22. [16] A function f : X —Y is called fuzzy €

-irresolute (resp. Fuzzy € -continuous) fﬁl(\/ )is fuzzy e-

open in X for every fuzzy € -open (resp. fuzzy open) set V of

Y.

Definition 2.23. A space (X,7)is called fuzzy nearly com-
pact [10] (resp.fuzzy €-compact ) if every fuzzy regular open
(resp. fuzzy € -open) cover of X has a finite subcover.

Definition 2.24. [18] A space X is called fuzzy almost nor-
mal if for each fuzzy closed set A and each fuzzy regular
closed set B such that AN B = @, there exists disjoint fuzzy
opensets U and V suchthat A<U and B<V .

3 Fuzzy COMPLETELY e - IRRESOLUTE FUNCTION

Definition 3.1. Let (X,7)and (Y,o)be a fuzzy topological
spaces. A function f :(X,7) = (Y,0), is said to be a fuzzy

completely € -irresolute function if f '(V)is fuzzy regular

openin X for every fuzzy €-openset A of Y.

Remark 3.2. Every fuzzy strongly continuous function is fuzzy
e -irresolute, but the converse is not true.

Example 3.3 LetX =Y ={a,b,c}. Define fuzzy sets

o o X —>[01]  such  that 7={0} and
03 04 05 0.7
U:{O,l,ﬂl,ﬂz} where M:?+T+T/ My :?

05 05
+——

Define f :(X,7) = (Y,0) be the identity

function. Then f is fuzzy € -irresolute but not fuzzy strongly

continuous.

Remark 3.4. Every completely € -irresolute function is fuzzy
€ -irresolute. But the converse is not true.
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Example 3.5 Let X =Y ={a,b,C}. Define fuzzy sets

ty py - X —=>[01]  such  that 7={01 4} and
& ={0, 1y, s, }where 11, =E+%+E, =07
a c

+E+%. Define f:(X,7) > (Y,0) be the identity
C

function. Then f is fuzzy € -irresolute but not fuzzy com-

pletely € -irresolute.

Remark 3.6. Every e€-irresolute function is fuzzy €-
irresolute. But the converse is not true.

Example 3.7. Let X =Y ={a,b,C}. Define fuzzy sets
lul, ,uga,uga,uA,: X — [011] that7 ={0,1, s Hy,

_06,05 05

’

such

05,05 06 05 04
P N
04 04 04 05 0.6 , ) ~
+T T, Hs =?+T+T . Define f .(X,J)
0.7

—> (Y, 0) be the identity function. Then 4 = — +

) 0.6
a b

+—— is fuzzy open but not €-open in (X, 7). Therefore
C

f is fuzzy y-irresolute but not fuzzy completely € -

irresolute.

Theorem 3.8.1f T :(X,7) = (Y,0) is a fuzzy completely €
-irresolute function A is any fuzzy open subset of X , then
the restriction f |,: A—Y is fuzzy completely € -irresolute.
Proof. Let A be a fuzzy € -open subset of Y . By hypothesis,
f (1) is fuzzy regular open in X . Since A is fuzzy open

in X ,Then (f |,)™(4): f (1) N A is fuzzy regular open

in A.Therefore, f |,is fuzzy completely € -irresolute.

Theorem 3.9. The following hold for functions f : X —Y
and .Y > Z :

1. f f:X —>Yis fuzzy completely € -irresolute and
g:Y > Z is fuzzy e-irresolute, then Qo f:X — Zis
fuzzy completely € -irresolute.

2. If function f : X —Y is fuzzy completely continuous and

is fuzzy completely € -irresolute, then Qo f: X —>Z is
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fuzzy completely € -irresolute.

3. If
g:Y > Z is fuzzye-continuous, then go f: X —>Z is

f:X —>Yis fuzzy completely €-irresolute and

fuzzy completely continuous.
Proof. Obvious.

Definition 3.10. A space X is said to be fuzzy € -connected,
if X cannot be expressed as the union of two nonempty
fuzzy € -open sets.

Theorem 3.11. If a mapping f : X —Y is fuzzy completely
€ -irresolute surjection and X is fuzzy almost connected then
Y is fuzzy € -connected.

Proof. Assume that X is fuzzy connected and Y is not fuzzy
e -connected. Then Y can be writtenas Y =U UV such that

U and V are disjoint nonempty fuzzy € -open sets. Since f

is fuzzy completely € -irresolute, f N U)and f 71(\/ )) are

disjoint fuzzy regular open sets and
X = f*(U)uU f (V) This shows that X is not fuzzy con-

nected. This is a contradiction.

Definition 3.12. A space X is called fuzzy almost regular [6]
(resp. fuzzy strongly € -regular) if for any fuzzy regular closed
(resp. fuzzy € -closed) set F < X and any point Xe X — F,
there exists disjoint fuzzy open (resp. fuzzy € -open) sets U

and V suchthat XeU and F <V.

Definition 3.13. A function f : X —Y is called fuzzy pre- €
~closed if the image of every fuzzy € -closed subset of X is
fuzzy € -closedsetin Y .

Theorem 3.14. If a mapping f : X —Y is fuzzy pre-€-
closed, then for each subset B of Y and a fuzzy €-open
setU of X containing f (B) there exists a fuzzy € -open
set V in Y containing B such that f (V) <U.

Proof. Obvious.

Theorem 3.15. If f is fuzzy completely € -irresolute € -open
from an almost regular space X onto a space Y , then Y is
fuzzy strongly f -regular.

Proof. Let f be fuzzy € -closed setin Y with Y & F such that
y = f(X). Since f is fuzzy completely € -irresolute func-
tion, f _l(F) is fuzzy regular closed and so fuzzy closed set
in X and hence X¢ f*(F). By almost regularity of X

there exists disjoint fuzzy open sets U and V such that

f (V) are disjoint fuzzy € -open sets. Thus Y is fuzzy strong-
ly €-regular.

Definition 3.16. A space X is called fuzzy strongly € -

normal if for every pair of disjoint fuzzy € -closed subsets F
and F, of X there exists disjoint fuzzy € -open sets U and
V suchthat K <U and F, <V .

Theorem 3.17.1f f is fuzzy completely € -irresolute injective
function from an fuzzy almost normal spaces X onto a space
Y then Y is fuzzy strongly € -normal.

Proof. Let F, and F, be disjoint fuzzy € -closed sets in Y .

Since f is fuzzy completely €-irresolute function
f(F,)and f'(F,)are disjoint fuzzy regular closed and so

fuzzy closed setin X . By fuzzy almost normality of X , there

exists disjoint fuzzy open sets U and V such that
f*(F),<Uand f(F,)<V .Weobtain that F, <U and
F, <V. such that f(U)and f(V) are disjoint fuzzy e-

open. Thus Y is fuzzy strongly € -normal.

Definition 3.18. A fuzzy topological space (X, 7)is said to be
fuzzy €-T, (resp. fuzzy I-T)) if for each pair of distinct
points X and Y of X , there exists fuzzy € -open (resp. fuzzy
regular open) sets U, and U, such that XeU,and y €U,,
X¢U,and yeU,.

Theorem 3.19.If T :(X,7) > (Y,0) is fuzzy completely €
-irresolute injective function and Y is fuzzy €-T then X is
fuzzy r-T,.

Proof. Suppose that Y is fuzzy €-T,. For any two distinct
points X and Y of X, there exists fuzzy € -opensets F, and
F, in Y such that f(X)eF, f(y)eF,, f(X)eF,and
f(y) ¢ F,. Since f injective fuzzy completely € -irresolute

function, we have X isfuzzy I-T,.

Definition 3.20. A fuzzy topological space (X, 7)is said to be
fuzzy €-T, (resp. fuzzy I-T)) if for each pair of distinct
points X and Y of X, there exists disjoint fuzzy € -open

X eU and fH(F)<V. We obtain that  (resp. fuzzy regular open) sets A and B such that X € Aand
y=f(X)ef(U)and F<f(V) such that f(U)and Ye€B.
IJSER © 2015
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Theorem 3.21.If f :(X,7) —> (Y, o) is fuzzy completely € -

irresolute injective function and Y is fuzzy €-T, then X is
fuzzy r-T,.

Proof. Suppose that Y is fuzzy € - T,. For any two distinct
points X and Y of X , there exists fuzzy €-open sets F
and F, in Y f(x)eFR, f(y)eF,,
f(x)g F,and f(y)¢F,. Since f injective fuzzy com-

such that

pletely € -irresolute function, we have X is fuzzy I -T,.

4 Fuzzy COMPLETELY WEAKLY € -IRRESOLUTE
FUNCTION

Definition 4.1. A function f:(X,7)—> (Y,0)is fuzzy
completely weakly € -irresolute if and only if the inverse im-
age of each fuzzy € -openset V in Y is fuzzy opensetin X .

It is evident that every fuzzy completely € -irresolute
function is fuzzy completely weakly € -irresolute function and
every completely weakly € -irresolute function is fuzzy € -
irresolute.

However, none of the above implications are not true
as shown in the following example.

Example 4.2 Let | =[0,1] and z4and s, be fuzzy subsets of

| defined as

1(6x+1) if OSXSl
5 4

1 (X) =
Loxs+nit L<x<a
3 4
%(4x+1) if 0< xé%
My (X) =

daowif T<x<t
3 2

Clearly 7, ={0,1}and 7, ={0,1, 14, }and 7, ={0,1, 14, 14,

Ny, L A L, yare topologieson | . Let T :(l,7))
— (l,7,) be defined by f(X)= Xfor each X € |. Then f

is fuzzy € -irresolute but not fuzzy completely weakly € -
irresolute.

Let g:(l,73) = (I,7,)be defined by g(X) = X for
each Xe |.Then g~ = (1), g7 (1,) = (1,) which is fuzzy

open but not regular open in (l,7,;) Therefore, g is fuzzy
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completely weakly € -irresolute but not fuzzy completely € -
irresolute.

Theorem 4.3. For a function f :(X,7)— (Y,o), the fol-
lowing statements are equivalent:
(i) T is fuzzy completely weakly € -irresolute;

(ii) for each fuzzy point X, in X and each fuzzy € -open € -
gq-nbd V of f(X,), there exists a fuzzy open q-nbd U of
X, subset that f(U) <V ;

(i) f(CI(A)) <eCl(f(A)), for each fuzzy set Ain X ;

(iv) CI(f *(B)) < f (eCI(B)),, for each fuzzy set B inY ;

(v) for each fuzzy € -closed set Vin Y, f7'(V)is fuzzy
closed setin X ;

vi) f*(e-Int(B)) < Int(f *(B)), for each fuzzy set B in
Y.
Proof. (i)=(ii). Let V be any fuzzy €-open €-( -nbd of

f(x,)inY. Then V(f(X))+a >1. We choose a positive
real number O such that V(f(X))>0>1—a ThenV is
a fuzzy € -openset, f(X,) €V . By hypothesis, there exists
fuzzy openset U, X, €U suchthat f(U)<V ,U(X)>

8 >1-a. Therefore, U is a fuzzy open ¢ -nbd of X, .

(i) = (iii). Let X, € CI(A)then UQA and f (U)qf (A) im-
plies Vgf (A), f(x,)ceCI(f(A))and x, f *(eCl

(T (A)). CI(A) < f*(eCI(f (A))). Hence,
f (x,) e eCI(f (A)) ff *(eCI(f (A))) <eCI(f(A)).

(iif) = (iv). Clear

Therefore,

(iv) = (ii). Let X, be a fuzzy pointin X and V bea fuzzy € -
open €-(q-nbd of f(x,)and let f(x,)¢&eCl(1-V),oth-
erwise since V is a fuzzy €-open € -  -nbd of f(X,), we
V@ —V)which is a Thus,
x, ¢ f(eCI(L-V)) and by hypothesis, X, = Cl (f (1

have contradiction.

—U)). Then there exists a fuzzy openset U of X_such that

Ua f (1—V) which implies that f (U)<V.
(iv)=(v). Let F be any € -closed set in Y.By (iv), we have
CI(f *(F))< f*(eCI(F))= f *(F)and so, f'(F)is

fuzzy closed in X .
(iv) = (v) Clear.
(i) = (vi) For any fuzzy set V in Y, e- Int(V)is fuzy e-

opensetin Y andso f *(eInt(V))is fuzzy opensetin X .

IJSER © 2015
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015

ISSN 2229-5518

Hence f (eInt(V) = Int(f “(elnt(V))) < Int(f (V).

(vi) = (i). Obvious.

Theorem 4.4. Let X and Y be fuzzy topological space such
that X is product related to Y. Then the product U XV of a
fuzzy €-openset U in X and fuzzy €-opensetV in Y. is
a fuzzy € -open set in the fuzzy product space.

Proof. Similar to the proof of Theorem 3.10 in [1]

Theorem 4.5. If T : X, >Y, (i =1, 2) are fuzzy completely
weakly € -irresolute functions and Y, is product related to
Y,, then f,: X, x X, >Y,;xY,is fuzzy completely weakly
€ -irresolute.
Proof. Consider A=V(U,xV,)where U;’s and V, ’s are
fuzzy €-open sets of Y, and Y,, respectively. Since Y, is
producted to Y,, then from Theorem 4.2., A is fuzzy € -open
set  of Y, xY,. By 22,
f (A =v(f'(U,)x f,2(V,)). Since f, and f,are com-

Lemma 2.1. and

pletely weakly € -irresolute, f 71(A) is a fuzzy open in
X, x X,.

Theorem 4.6. Let f :(X,7) = (Y,0) be a function and X
is product related to Y. If the graph g: X — X xY of T is
fuzzy completely weakly € -irresolute, thensois f .

Proof. Let V be a fuzzy €-open setin Y.By Lemma 2.3., we
have f'(V)=1A f(V)=g'(AxV). Since g is fuzzy
completely weakly € -irresolute and 1xV is fuzzy € -open set

in X xY. f(V)is fuzzy open setin X andso, f isfuzzy
completely weakly € -irresolute.

Next, the composition and preservation of fuzzy top-
ological structure under the fuzzy completely weakly € -
irresolute which other fuzzy functions are studied.

The proof of the following theorem is obvious and

hence omitted.

Theorem 4.7.Let f :(X,7) > (Y,0)and g:(Y,0) >
(Z,n) be two functions.

1. If is fuzzy completely weakly € -irresolute and is J fuzzy

completely € -irresolute, then o f is fuzzy completely € -
irresolute.

2. If f is fuzzy completely weakly € -irresolute and ( is
fuzzy € -irresolute, then Qo f is fuzzy completely weakly

go f -rresolute.
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3.1f f is fuzzy completely continuous and § is fuzzy com-
pletely weakly € -irresolute, then Qo f is fuzzy complete-
ly € -irresolute.

4.1f f is fuzzy completely € -irresolute and g is fuzzy com-
pletely weakly € -irresolute, then Qo f is fuzzy complete-
ly € -irresolute.

5. If f is fuzzy totally continuous and § is fuzzy completely
weakly €-irresolute, then Qo fis fuzzy completelye -
irresolute.

6. If f is fuzzy completely weakly € -irresolute and ( is fuzzy
e -continuous, then g o f is fuzzy continuous.

7.1If f is fuzzy € -continuous and § is fuzzy completely weak-

ly e -irresolute, then o f is fuzzy € -irresolute.

8. If f is fuzzy continuous and § is fuzzy completely weak-

ly € -irresolute, then Qo fis fuzzy completely weaklye -

irresolute.
Proof. Obvious.

Theorem 4.8. Let f :(X,7) — (Y,0)is fuzzy almost open
surjective function

and g :(Y,0) — (Z,n) is function such that g o f :
(X,7) > (Z,n)is fuzzy completely € -irresolute, then g is
fuzzy completely weakly € -irresolute.

Proof. Let V' be a fuzzy€-open set in Z . since Qo f is

fuzzy completely € -irresolute, (( o f )_1(\/ )="f _19_1 v))
is fuzzy regular open in X. Since f is fuzzy almost open sur-
jective, f(f (g™ (V)) =g "(V)is fuzzy openin Y. There-

fore, g is fuzzy completely weakly € -irresolute.

Theorem 4.9. Let f :(X,7) = (Y,0)is fuzzy open surjec-
tive function and ¢ :(Y,0) — (Z,7) is a function such that
gof:(X,7) > (Z,n)is fuzzy completely weakly €-
irresolute, then Q is fuzzy completely weakly € -irresolute.

Proof. Similar to the proof of Theorem 4.6.
Theorem 4.10. Let P, be the projection function from [] X;
onto X,.If f:X —>[IX, is fuzzy completely weakly € -
irreolute function, then P, o f is also fuzzy completely weakly
€ -irresolute.

Proof. Obvious.

Definition 4.11. A collection f of fuzzy sets in a fuzzy space

X is said to be cover [8] of a fuzzy set 77of X if and only if
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Aeu

(V AJ(X) =1, for every X € S(77).A fuzzy cover i of a

fuzzy set 77 in a fuzzy space X is said to have a finite sub-

cover if and only if there exists a finite subcollection

p={A, A,...,A of i such that [V AJ(X) >1(x),

Aeu

for every X € S(77), where $(77) denotes the support of a
fuzzyset 7).

Definition 4.12. A fuzzy topological space X is called:

1. fuzzy compact [7] if every fuzzy open cover 4 of X hasa
finite subcover.

2. fuzzy € -compact [16] if every fuzzy € -open cover A of X
has a finite subcover.

3. fuzzy € -closed [16] if every fuzzy € -open cover A of X
has a finite subfamily V of A4 such that (\, €Cl(u))(x) =1

ueVv

for each X € X.

Theorem 4.13. Let T :(X,7) = (Y,0) is a fuzzy completely
weakly € -irresolute surjective function and X is fuzzy com-
pact space, then Y is fuzzy € -compact.

Proof. Let {V, & € A}be any fuzzy €-open cover of Y.
Then {f (V). € A} is a fuzzy open cover of X.Since

X is fuzzy compact there exists a finite subfamily
fH(V,):i=12,..,nyof {f(V,):aeA}which covers
X. Hence, Y is fuzzy € -compact.

Corollary 4.14. Let T :(X,7) —> (Y,0)is fuzzy completely

weakly € -irresolute surjective function and X is fuzzy
compact space, then Y is fuzzy € -closed.

Definition 4.15. Two non-zero fuzzy sets Aand B in X are
said to be separated [13] (resp. fuzzy € -separated) if

Aq CI(B)and  Bq CI(A) Aq eCI(B) and
Bq eCI(A)).

(resp.

Definition 4.16. A fuzzy topological space X is said to be
fuzzy connected [14] (resp. fuzzy € -connected) if it cannot be
expressed as the union of two fuzzy separated (resp. fuzzy € -
separated) sets.

Lemma 4.17. Two non-zero fuzzy sets A and B are fuzzy € -
separated if and only if there exist two fuzzy € -open sets U

and V such that A<U, B<V,AqV and BqU.

Theorem 4.18. Let f :(X,7) = (Y,0)is fuzzy completely
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weakly € -irresolute surjective function. If U is a fuzzy con-

nected subsetin X, then f(U)is fuzzy € -connectedin Y .
Proof. Suppose that f(U)is not €-connected in Y. Then

there exist fuzzy € -separated subsets G and H in Y. such
that f(U) =G v H. By Lemma 4.1,, thereexist fuzzy € -open

subsets V and W such that G <V, H <W,GqW and
HGV . Since f is fuzzy complete weakly € -irresolute,
f(G)and
U=fi(fU)=f GvH)=fYG)v fi(H) Itis
clear that f '(G)and f *(H)are fuzzy separated in X .

f*(H)are fuzzy open in X and

Therefore, U is not fuzzy connected in X.

Corollary 4.19. Let  :(X,7) —> (Y,0) be a fuzzy complete-
ly weakly € -irresolute surjective function. If U is a fuzzy
connected subset in X, then f(U) is also fuzzye-
connected.

Theorem 4.20. A function f :X —Y is fuzzy completely

weakly € -irresolute if the graph function g: X — X x X,
defined by g(X) = (X, g(X)) for each X € X is fuzzy com
pletely weakly € -irresolute .

Proof. Let V be any fuzzy €-opensetof Y . Then 1xV isa
fuzzy € -opensetof X xY .Since § is fuzzy completely €
-irresolute, f (V) =g (1xV) is fuzzy regular openin X .

Thus f is fuzzy completely weakly € -irresolute.

Theorem 4.21. If f :(X,7) > (Y,0) is fuzzy completely
weakly € -irresolute injective function and Y is fuzzy € - T,
then X is fuzzy Hausdorff.

Proof. Let X,y be any two distinct points of X. Since f is
injective, we have f(X)# f(y).Since Y is fuzzy € - T, ,
there exists V and W are € -open sets in Y. such that
V AW =0.
irresolute, there exists fuzzy open sets G and H in X such
that f(G)<Vand f(H)<W.
G A H =0. This shows that X is fuzzy Hausdorff.

Since f is fuzzy completely weakly e€-

Hence we obtain

Theorem 4.22. If a function f : X —Y is a fuzzy completely
weakly € -irresolute surjection and X is fuzzy connected,
then Y is fuzzy € -connected.

Proof Suppose that Y is not fuzzy € -connected. There exists
non empty fuzzy € -open sets V and W of Y such that
Y =V vW . Since f is fuzzy completely weakly € -irresolute

IJSER © 2015
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f 71(\/ ) and f 71(\N )are fuzzy open sets and

X =f1(V)v f 1(W). This shows that X is not fuzzy con-
nected. This is a contradiction.

CONCLUSION

We have defined and proved basic properties of Fuzzy Com-
pletely € -Irresolute Functions and Fuzzy Completely Weakly
€ -Irresolute Function. Many results have been established to
show how far topological structures are preserved by these € -
Irresolute Functions. We also have provided examples where
such properties fail to be preserved.
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