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 Fuzzy Completely Weakly e -irresolute 
Functions 
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Abstract—In this paper, we introduce a new class of functions called fuzzy completely e  -irresolute functions between fuzzy topological 
spaces and also in this paper, fuzzy e -open sets and fuzzy e -closed sets are used to define and investigate a new class of functions 
called fuzzy completely weakly e -irresolute. Relationships between the new class and other classes of functionsare established. 
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——————————      —————————— 

1 INTRODUCTION                                                                     
VER  since the introduction of fuzzy sets by Zadeh [20], 
the fuzzy concepts has invaded almost all branches of 

Mathematics. The concept of fuzzy topological space has in-
troduced by chang [5] in 1968. Since then many fuzzy topolo-
gists have extended various notions in classical topology to 
fuzzy topological spaces. In this paper, fuzzy e -open sets and 
fuzzy e -closed sets are used to define and investigate a new 
class of functions called fuzzy completely weakly e -
irresolute. Relationships between the new class and other clas-
ses of functions are established. Throughout this paper X  
and Y  are always fuzzy topological spaces. The class of all 

fuzzy sets on a universe X  will be denoted by .XI  Let A  be 
a fuzzy subset of a space X . The fuzzy closure of A , fuzzy 
interior of A , fuzzy δ -closure of A  and the fuzzyδ -interior 

of A are denoted by )(ACl , )(AInt , )(AClδ and 

)(AIntδ respectively. 

 
A fuzzy subset A  of space X  is called fuzzy regular open [1] 
(resp. fuzzy regular closed) if ))(( AClIntA =  (resp. 

))(( AIntClA = . The fuzzy δ -interior of fuzzy subset A  of 

X is the union of all fuzzy regular open sets contained in A . A 

fuzzy subset A  is called fuzzy δ -open [12] if ))(AIntA δ= . 

The complement of fuzzy δ -open set is called fuzzy δ -

closed (i.e,. ))(AClA δ=  
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2   PRELIMINARIES 
Now, we introduce some basic notions and results that are 
used in the sequel.  

 
Definition 2.1. A fuzzy topology on a nonempty set X  is a 
family δ  of fuzzy subsets of X which satisfies the following 
three conditions: 
(i) 0, 1 ∈δ  , 
(ii) If g, ℎ ∈δ , their g ∧ ℎ ∈δ  
(iii) if ∈δ for each ,Ii∈  then .δ∈∨

∈
i

Ii
f  

The pair ),( τX is called a fuzzy topological space [5]. 
 

Definition 2.2. Members of δ are called fuzzy open sets [5] 
and complements of fuzzy open sets are called fuzzy closed 
sets [5], where the complement of a fuzzy set ,A  denoted by 

,CA   is A−1 . 
 

Definition 2.3. [15] The fuzzy subset αx   of a non-empty set 

X  , which Xx∈  and 10 ≤< a defined by 





≠
=

=
xpif
xpifa

pxa 0
)(   

is called a fuzzy point in X  with suppost x  and value a . 

The fuzzy point ax  is called point. 

 
Definition 2.4.  [15]  Let λ  be fuzzy set in X  and ax  a fuzzy 

point in .X  we say that λ≤aX . 

 
 
 

E 
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Definition 2.5. [9] A fuzzy set λ  of a fuzzy topological space 
X  is said to be fuzzy  γ -open if Cl≤λ  

 ))()( λλ ClIntInt ∨  where µλµµλ ,:{)( ≥∧=Cl  

 is fuzzy closed in }X  and µλµµλ ,:{)( ≤∧=Int  is fuzzy 

open in }X .  If λ  is fuzzy γ -open, then λ−1  is fuzzy γ -
closed. 
Definition 2.6. [3] Let YXf →: be a mapping. Then f is 

called a fuzzy  γ -irresolute mapping if )(1 Vf − is a fuzzy γ -

open set in X  for each fuzzy  γ -open set  in .Y  
 

Definition 2.7. [17] A fuzzy set λ  of a fuzzy topological space 
X  is said to be fuzzy e -open (resp. regular open [1]) if 

))()( λλλ δδ ClIntIntCl ∨≤ (resp. ))(( λλ ClInt= ) where 

µλµµλ ,:{)( ≥∧=Cl  is fuzzy closed in }X  and 

µλµµλ ,:{)( ≤∧=Int  is fuzzy open in }X . If λ is fuzzy 

e -open, then λ−1  is fuzzy e -closed. 
 

Definition 2.8. [17] Let X  be a fuzzy topological space and 
λ  be any fuzzy set in X . The fuzzy e -closure of λ  in X  is 
denoted by )(λeCl  as follows: 

λµλλµ ,:{)( ≥∧=eCl  is a fuzzy e  -closed set of }X . 

Similarly we can define ).(λeInt  
 
Remark 2.9. For a fuzzy set λ  of X , )(1 λeInt− e= Cl  

)1( λ− . 
 

Remark 2.10. A fuzzy set λ  is fuzzy e -closed if and only if 
λλ =)(eCl . 

 
Definition 2.11. [15] A fuzzy set A  in X  is said to be q -

coincident with a fuzzy set B , denoted by AqB , if there ex-

ists Xx∈ such that 1)()( >+ xBxA . It is known that 

BA ≤ if and only if A  and B−1 are not q  -coincident, de-

note by qA )1( B− . 
 

Definition 2.12. [15] A fuzzy set B  is a quasi neighbourhood 
( q -neighbourhood, for short) of A  if and only if there exists a 
fuzzy open set U  such that BAqU ≤ . 

 
Definition 2.13. A fuzzy set A  in X  is said to be a e - q -

neighbourhood ( e - q -nbd, for short) of  αx   if and only if 

there a fuzzy e  -open set V  in X  such that AqVx ≤α . 

 
Theorem 2.14. [15] In a fuzzy topological space ,X λ be a 

fuzzy e -closed (resp. fuzzy e -open) if and only if 
)(λλ eCl=  (resp. )(λλ eInt= ). 

 
Definition 2.15. [3] Let X  and Y  be two fuzzy topological 

spaces. Let XI∈λ , YI∈µ . Then )(λf is a fuzzy subset of 

Y , defined by ]1,0[:)( →Yf λ  
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and )(1 µ−f is a fuzzy subset of X , defined by 

))(())((1 xfxf µµ =− . 
 

Lemma 2.16. [1] Let YXf →: be a function and }{ αλ  be a 

family of fuzzy sets of Y , then 

(i)  )()( 11
αα λλ −− = ff , 

(ii) )()( 11
αα λλ 11 −− = ff . 

 
Lemma 2.17. [1] For functions iii YXf →: , and fuzzy sets 

iλ of iY , i = 1, 2;  we have ×=×× −− )()()( 1
1

121
1

21 λλλ fff  

)( 2
1

2 λ−f . 

Lemma 2.18. [1] Let YXXg ×→:  be the graph of a func-

tion .: YXf →  Then, if λ  is a fuzzy set of X  and µ is a 

fuzzy set of .Y  )()( 11 µλµλ −− ∧=× fg . 
 

Definition 2.19. A functions YXf →: is said to be: 
1. fuzzy completely continuous [4] if )(1 Vf − is fuzzy regular 

open in X  for each fuzzy open set V  in Y  ; 

2. fuzzy e -irresolute [16] if )(1 Vf − is fuzzy e -open in X  

for each fuzzy e –open set V  in Y  ; 

3. fuzzy e -continuous [17] if )(1 Vf − is fuzzy e -open in X  

for each fuzzy open set V  in Y  ; 

4. fuzzy totally continuous [11] if )(1 Vf − is fuzzy clopen in 

X  for each fuzzy subset V  in Y ; 
5. fuzzy open [19] if  )(Vf  is fuzzy open set in Y  for each 

fuzzy open set V  in X  ; 
6. fuzzy almost open [13] if )(Vf is fuzzy regular open set in 

Y  for each fuzzy regular open set V  in X ; 

7. fuzzy strongly continuous [2] if )(1 Vf − is fuzzy open fuzzy 
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closed set in X  for every fuzzy set λ  in .Y  
 

Definition 2.20. A function YXf →: is called fuzzy e -
open [16] (resp. fuzzy pre- e  -open) if the image of each fuzzy 
open (resp. fuzzy e  -open) set in X  is fuzzy e  -open in Y . 

 
Definition 2.21. [2] A function YXf →: is called fuzzy 

completely continuous if )(1 Vf −  is fuzzy regular open in 

X for every fuzzy open set V  of Y . 
 

Definition 2.22. [16] A function YXf →: is called fuzzy e  

-irresolute (resp. Fuzzy e -continuous) )(1 Vf − is fuzzy e -

open in X for every fuzzy e -open (resp. fuzzy open) set V  of 
Y . 

 
Definition 2.23. A space ),( τX is called fuzzy nearly com-
pact [10] (resp.fuzzy e -compact ) if every fuzzy regular open 
(resp. fuzzy e -open) cover of X  has a finite subcover. 

 
Definition 2.24. [18]  A space X  is called fuzzy almost nor-
mal if for each fuzzy closed set A  and each fuzzy regular 
closed set B  such that φ=∩BA , there exists disjoint fuzzy 
open sets U  and V  such that UA ≤ and VB ≤ . 

 

3   FUZZY COMPLETELY e - IRRESOLUTE FUNCTION 
 
Definition 3.1. Let ),( τX and ),( σY be a fuzzy topological 

spaces. A function ),(),(: στ YXf → , is said to be a fuzzy 

completely e -irresolute function if )(1 Vf − is fuzzy regular 

open in X  for every fuzzy e -open set λ  of Y . 
 

 
Remark 3.2. Every fuzzy strongly continuous function is fuzzy  
e  -irresolute, but the converse is not true. 

 
Example 3.3 Let },,{ cbaYX == . Define fuzzy sets 

,1µ ]1,0[:2 →Xµ  such that  }1,0{=τ  and 

},,1,0{ 21 µµσ =  where 
cba
5.04.03.0

1 ++=µ , 
a
7.0

2 =µ   

cb
5.05.0

++ Define ),(),(: στ YXf →  be the identity 

function. Then f is fuzzy e  –irresolute but not fuzzy strongly 
continuous. 

 
Remark 3.4. Every completely e  -irresolute function is fuzzy 
e -irresolute. But the converse is not true. 

 

Example 3.5 Let },,{ cbaYX == . Define fuzzy sets 

]1,0[:2,1 →Xµµ  such that },1,0{ 3µτ =  and 

},,1,0{ 21 µµσ = where
cba
5.04.03.0

1 ++=µ ,   
a
7.0

2 =µ  

cb
5.05.0

++ . Define ),(),(: στ YXf →  be the identity 

function. Then f is fuzzy e  -irresolute but not fuzzy com-
pletely e  -irresolute. 

 
Remark 3.6. Every e -irresolute function is fuzzy e -
irresolute. But the converse is not true. 

 
Example 3.7. Let },,{ cbaYX == . Define fuzzy sets 

]1,0[:,, 432,1 →Xµµµµ  such that ,,,1,0{ 21 µµτ =  

}, 43 µµ and },1,0{ 5µσ =  where 
cba
5.04.03.0

1 ++=µ  

cba
5.05.06.0

2 ++=µ ,
cba
4.05.06.0

3 ++=µ , 
a
3.0

4 =µ  

b
4.0

+  
c
4.0

+ ,
cba
6.05.04.0

5 ++=µ  . Define ),(: ℑXf  

),( σY→  be the identity function. Then 
a
7.0

=λ  
b
6.0

+  

c
4.0

+  is fuzzy  open but not e -open in ),( τX . Therefore 

f  is fuzzy  γ -irresolute but not fuzzy completely e  -
irresolute. 

 
Theorem 3.8. If ),(),(: στ YXf → is a fuzzy completely e  

-irresolute function A  is any fuzzy open subset of X , then 

the restriction YAf A →:| is fuzzy completely e -irresolute. 

Proof. Let λ  be a fuzzy e -open subset of Y . By hypothesis, 

)(1 λ−f is fuzzy regular open in X  . Since A  is fuzzy open 

in X  , Then Aff A ∩−− )(:)()|( 11 λλ  is fuzzy regular open 

in A . Therefore, Af | is fuzzy completely e -irresolute. 
 

Theorem 3.9. The following hold for functions Xf : Y→  
 and ZYg →:  : 
1. If YXf →: is fuzzy completely e -irresolute and 

ZYg →:  is fuzzy e -irresolute, then ZXfg →: is 
fuzzy completely e -irresolute. 
2. If function YXf →: is fuzzy completely continuous and  

is fuzzy completely e -irresolute, then ZXfg →:  is 
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fuzzy completely e  -irresolute. 
3. If YXf →: is fuzzy completely e -irresolute and 

ZYg →:  is fuzzy e -continuous, then ZXfg →:  is 
fuzzy completely continuous. 
Proof. Obvious. 

 
Definition 3.10. A space X  is said to be fuzzy e -connected, 
if X  cannot be expressed as the union of two nonempty 
fuzzy e -open sets. 

 
Theorem 3.11. If a mapping YXf →: is fuzzy completely 
e  -irresolute surjection and X is fuzzy almost connected then 
Y  is fuzzy e  -connected. 
Proof. Assume that X  is fuzzy connected and Y  is not fuzzy 
e  -connected. Then Y  can be written as VUY ∪= such that 

U  and V  are disjoint nonempty fuzzy e -open sets. Since f  

is fuzzy completely e -irresolute, )(1 Uf − and )(1 Vf − ) are 
disjoint fuzzy regular open sets and 

)()( 11 VfUfX −− ∪= This shows that X is not fuzzy con-
nected. This is a contradiction. 

 
Definition 3.12. A space X  is called fuzzy almost regular [6]  
(resp. fuzzy strongly e -regular) if for any fuzzy regular closed 
(resp. fuzzy e -closed) set XF ≤ and any point FXx −∈ , 
there exists disjoint fuzzy open (resp. fuzzy e  -open) sets U  
and V  such that Ux∈ and VF ≤ . 

 
Definition 3.13. A function YXf →: is called fuzzy pre- e  
-closed if the image of every fuzzy e -closed subset of X  is 
fuzzy e -closed set in Y  . 

 
Theorem 3.14. If a mapping YXf →:  is fuzzy pre- e -

closed, then for each subset B  of Y  and a fuzzy e -open 

setU of X  containing )(1 Bf − there exists a fuzzy e -open 

set V  in Y  containing B  such that .)(1 UVf ≤−  
Proof. Obvious. 

 
Theorem 3.15. If f is fuzzy completely e -irresolute e -open 
from an almost regular space X  onto a space Y  , then Y  is 
fuzzy strongly f  -regular. 
Proof. Let f be fuzzy e -closed set in Y  with Fy∉ such that 

)(xfy = . Since f  is fuzzy completely e -irresolute func-

tion, )(1 Ff −  is fuzzy regular closed and so fuzzy closed set 

in X  and hence )(1 Ffx −∉ .  By almost regularity of X  

there exists disjoint fuzzy open sets U  and V such that 

Ux∈ and VFf ≤− )(1 . We obtain that 

)()( Ufxfy ∈= and )(VfF ≤  such that )(Uf and 

)(Vf are disjoint fuzzy e -open sets. Thus Y  is fuzzy strong-
ly e -regular. 

 
Definition 3.16. A space X  is called fuzzy strongly e  -

normal if for every pair of disjoint fuzzy e -closed subsets 1F  

and 2F  of X  there exists disjoint fuzzy e –open sets U  and 

V such that UF ≤1 and VF ≤2 .  
 

Theorem  3.17. If f  is fuzzy completely e -irresolute injective 
function from an fuzzy almost normal spaces X  onto a space 
Y  then Y  is fuzzy strongly e -normal. 
Proof. Let 1F  and 2F  be disjoint fuzzy e -closed sets in Y . 

Since f  is fuzzy completely e -irresolute function 

)( 1
1 Ff − and )( 2

1 Ff − are disjoint fuzzy regular closed and so 

fuzzy closed set in X  . By fuzzy almost normality of X , there 
exists disjoint fuzzy open sets U  and V  such that 

UFf ≤−
1

1 )( and VFf ≤− )( 2
`1 . We obtain that UF ≤1 and 

.2 VF ≤  such that )(Uf and )(Vf  are disjoint fuzzy e -

open. Thus Y  is fuzzy strongly e -normal. 
 

Definition 3.18. A fuzzy topological space ),( τX is said to be 

fuzzy e - 1T  (resp. fuzzy r - 1T ) if for each pair of distinct 

points x  and y  of X  , there exists fuzzy e -open (resp. fuzzy 

regular open) sets 1U  and 2U such that 1Ux∈ and ,2Uy∈  

2Ux∉ and 1Uy∉ . 
 

Theorem 3.19. If ),(),(: στ YXf →  is fuzzy completely e  

-irresolute injective function and Y  is fuzzy e - 1T then X  is 

fuzzy r - 1T . 

Proof. Suppose that Y  is fuzzy e - 1T . For any two distinct 

points x  and y  of X , there exists fuzzy e -open sets 1F  and 

2F  in Y  such that 1)( Fxf ∈ , 2)( Fyf ∈ , 2)( Fxf ∉ and 

1)( Fyf ∉ . Since f injective fuzzy completely e  -irresolute 

function,  we have X  is fuzzy r - 1T . 
 

Definition 3.20. A fuzzy topological space ),( τX is said to be 

fuzzy e - 1T  (resp. fuzzy r - 1T ) if for each pair of distinct 

points x  and y  of ,X  there exists disjoint fuzzy e -open 

(resp. fuzzy regular open) sets A  and B  such that Ax∈ and 

By∈ . 
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Theorem 3.21. If ),(),(: στ YXf →  is fuzzy completely e -

irresolute injective function and Y  is fuzzy e - 2T  then X  is 

fuzzy r - 2T . 

 Proof. Suppose that Y is fuzzy e  - 2T . For any two distinct 

points x  and y  of X  , there exists fuzzy e -open sets 1F  

and 2F  in Y  such that 1)( Fxf ∈ , 2)( Fyf ∈ , 

2)( Fxf ∉ and 1)( Fyf ∉ . Since f  injective fuzzy com-

pletely e  -irresolute function, we have X is fuzzy r - 1T . 
 

4   FUZZY COMPLETELY  WEAKLY e  -IRRESOLUTE 
FUNCTION 

 
Definition 4.1. A function ),(),(: στ YXf → is fuzzy 
completely weakly e -irresolute if and only if the inverse im-
age of each fuzzy e -open set V  in Y  is fuzzy open set in X . 

 
 It is evident that every fuzzy completely e -irresolute 

function is fuzzy completely weakly e -irresolute function and 
every completely weakly e -irresolute function is fuzzy e  -
irresolute.       

However, none of the above implications are not true 
as shown in the following example. 

 
Example 4.2 Let ]1,0[=I  and 1µ and 2µ be fuzzy subsets of 

I  defined as 










≤≤+

≤≤+
=

1
4
1)12(

3
1

4
10)16(

5
1

)(1

xifx

xifx
xµ  

 

     










≤≤−

≤≤+
=

1
4
1)1(

3
4

4
10)14(

10
1

)(2

xifx

xifx
xµ  

Clearly }1,0{1 =τ and },1,0{ 12 µτ = and ,,,1,0{ 213 µµτ =  

21 µµ ∨ }, 21 µµ ∧ are topologies on I  . Let ),(: 1τIf  

),( 2τI→  be defined by xxf =)( for each .Ix∈  Then f  
is fuzzy e -irresolute but not fuzzy completely weakly e -
irresolute.  

Let ),(),(: 23 ττ IIg → be defined by xxg =)( for 

each Ix∈ . Then )1(1 =−g , )()( 22
1 µµ =−g which is fuzzy 

open but not regular open in ),( 3τI Therefore, g  is fuzzy 

completely weakly e  -irresolute but not fuzzy completely e -
irresolute. 
 
Theorem 4.3. For a function ),(),(: στ YXf → , the fol-
lowing statements are equivalent: 
(i) f  is fuzzy completely weakly e -irresolute; 
(ii) for each fuzzy point αx  in X  and each fuzzy e -open e - 

q -nbd V  of )( αxf , there exists a fuzzy open q -nbd U  of 

αx subset that VUf ≤)( ; 

(iii) )),(())(( AfeClAClf ≤  for each fuzzy set A in X  ; 

(iv) )),(())(( 11 BeClfBfCl −− ≤ , for each fuzzy set B  inY ; 
(v) for each fuzzy e  -closed set V in ,Y  )(1 Vf − is fuzzy 
closed set in X ; 
(vi) ef (1− - )),(())( 1 BfIntBInt −≤ for each fuzzy set B  in 

Y . 
Proof. (i)⇒(ii). Let V  be any fuzzy e -open e - q  -nbd of 

)( αxf in .Y  Then .1))(( >+αxfV  We choose a positive 

real number δ such that αδ −>> 1))(( xfV Then V  is 

a fuzzy e  -open set, Vxf ∈)( α . By hypothesis, there exists 

fuzzy open set UxU ∈α, such that VUf ≤)( >)(, XU  

 .1 αδ −>  Therefore, U  is a fuzzy open q  -nbd of αx . 

(ii) ⇒ (iii). Let )(AClx ∈α then UqA  and )()( AqfUf im-

plies ))(()(),( AfeClxfAVqf ∈α and eClfx (1−
α  

)).(( Af  Therefore, ))).((()( 1 AfeClfACl −≤  Hence, 

)).(()))((())(()( 1 AfeClAfeClffAfeClxf ≤∈ −
α  

(iii) ⇒ (iv). Clear 
(iv) ⇒ (ii). Let αx be a fuzzy point in X  and V  be a fuzzy e  -

open e - q -nbd of )( αxf and let ),1()( VeClxf −∉α oth-

erwise since V  is a fuzzy e -open e  - q  –nbd of ),( αxf  we 

have )1( VVq − which is a contradiction. Thus, 

))1((1 VeClfx −∉ −
α and by hypothesis, Clx ≠α (( 1−f 1 

 )).U−  Then there exists a fuzzy open set U  of αx such that 

)1(1 VfqU −− which implies that .)( VUf ≤  

(iv)⇒(v). Let F  be any e  -closed set in .Y By (iv), we have 

)())(())(( 111 FfFeClfFfCl −−− =≤ and so, )(1 Ff − is 

fuzzy closed in X  . 
(iv) ⇒ (v) Clear. 
(i) ⇒ (vi) For any fuzzy set V  in ,Y  e - )(VInt is fuzy e -

open set in Y  and so ))((1 VeIntf − is fuzzy open set in X  . 
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Hence )).(()))((()(( 111 VfIntVeIntfIntVeIntf −−− ≤=  
(vi) ⇒ (i). Obvious. 

 
Theorem 4.4. Let X  and Y be fuzzy topological space such 
that X  is product related to .Y  Then the product VU × of a 
fuzzy e -open set U in X  and fuzzy e -open set V  in .Y  is 
a fuzzy e -open set in the fuzzy product space. 
Proof. Similar to the proof of Theorem 3.10 in [1] 

 
Theorem 4.5. If iii YXf →:  (i = 1, 2) are fuzzy completely 

weakly e –irresolute functions and 1Y  is product related to 

2Y , then 2121: YYXXfi ×→× is fuzzy completely weakly 

e -irresolute. 

Proof. Consider )( ii VUA ×∨= where iU ’s and iV  ’s are 

fuzzy e -open sets of 1Y  and 2Y , respectively. Since 1Y  is 

producted to ,2Y  then from Theorem 4.2., A  is fuzzy e  -open 

set of 21 YY × . By Lemma 2.1. and 2.2., 

))()(()( 2
2

1
1

1
ii VfUfAf −−− ×∨= . Since 1f  and 2f are com-

pletely weakly e -irresolute, )(1 Af − is a fuzzy open in 

.21 XX ×  

Theorem 4.6. Let ),(),(: στ YXf → be a function and X  

is product related to .Y   If the graph YXXg ×→: of f  is 

fuzzy completely weakly e -irresolute, then so is f . 

Proof. Let V  be a fuzzy e -open set in .Y By Lemma 2.3., we 

have ).1()(1)( 111 VgVfVf ×=∧= −−−  Since g  is fuzzy 

completely weakly e -irresolute and V×1 is fuzzy e -open set 

in )(. 1 VfYX −× is fuzzy open set in X  and so, f  is fuzzy 
completely weakly e  -irresolute. 

 Next, the composition and preservation of fuzzy top-
ological structure under the fuzzy completely weakly e -
irresolute which other fuzzy functions are studied. 

The proof of the following theorem is obvious and 
hence omitted. 

 
Theorem 4.7. Let ),(),(: στ YXf → and ),(: σYg →  

),( ηZ be two functions. 
1. If is fuzzy completely weakly e -irresolute and is g fuzzy 

completely e -irresolute, then fg  is fuzzy completely e -
irresolute. 
2. If f  is fuzzy completely weakly e -irresolute and g  is 

fuzzy e -irresolute, then fg  is fuzzy completely weakly 

fg   -irresolute. 

3. If f is fuzzy completely continuous and g  is fuzzy com-

pletely weakly e -irresolute, then fg  is fuzzy complete-
ly e -irresolute. 
4. If f  is fuzzy completely e -irresolute and g  is fuzzy com-

pletely weakly e -irresolute, then fg  is fuzzy complete-
ly e -irresolute. 
5. If f is fuzzy totally continuous and g  is fuzzy completely 

weakly e -irresolute, then fg  is fuzzy completely e -
irresolute. 
6. If f is fuzzy completely weakly e -irresolute and g  is fuzzy 

e  -continuous, then fg  is fuzzy continuous. 
7. If f is fuzzy e -continuous and g  is fuzzy completely weak-

ly e -irresolute, then fg  is fuzzy e -irresolute. 
 
8. If f is fuzzy continuous and g  is fuzzy completely weak-

ly e -irresolute, then fg  is fuzzy completely weakly e -
irresolute. 
Proof. Obvious. 

 
Theorem 4.8. Let ),(),(: στ YXf → is fuzzy almost open 
surjective function 
and ),(),(: ησ ZYg → is function such that :fg    

),(),( ητ ZX → is fuzzy completely e -irresolute, then g is 
fuzzy completely weakly e -irresolute. 
Proof. Let V  be a fuzzy e -open set in Z  . since fg  is 

fuzzy completely e -irresolute, )()( 1 Vfg − 11 −−= gf ))(V  

 is fuzzy regular open in .X  Since f is fuzzy almost open sur-

jective, )())((( 111 VgVgff −−− = is fuzzy open in .Y  There-
fore, g  is fuzzy completely weakly e  -irresolute. 

 
Theorem 4.9. Let ),(),(: στ YXf → is fuzzy open surjec-

tive function and ),(),(: ησ ZYg → is a function such that 

),(),(: ητ ZXfg → is fuzzy completely weakly e -
irresolute, then g  is fuzzy completely weakly e -irresolute. 
Proof. Similar to the proof of Theorem 4.6. 

 
Theorem 4.10. Let iP  be the projection function from iX∏  
onto iX . If iXXf ∏→:  is fuzzy completely weakly e  -
irreolute function, then fPi  is also fuzzy completely weakly 
e -irresolute. 
Proof. Obvious. 

 
Definition 4.11. A collection µ  of fuzzy sets in a fuzzy space 

X  is said to be cover [8] of a fuzzy set η of X  if and only if 
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,1)( =







∨

∈

xA
A µ

 for every ).(ηSx∈ A fuzzy cover µ  of a 

fuzzy set η  in a fuzzy space X  is said to have a finite sub-
cover if and only if there exists a finite subcollection 

nAAA ...,,,{ 21=ρ of µ  such that ),()( xxA
A

η
µ

≥







∨

∈

 

for every ),(ηsx∈ where )(ηs denotes the support of a 
fuzzyset .η  

 
Definition 4.12. A fuzzy topological space X  is called: 
1. fuzzy compact [7] if every fuzzy open cover λ  of X  has a 
finite subcover. 
2. fuzzy e  -compact [16] if every fuzzy e  -open cover λ  of X 
has a finite subcover. 
 
3. fuzzy e -closed [16] if every fuzzy e  -open cover λ  of X  

has a finite subfamily V  of λ  such that 1)))((( =∨
∈

xueCl
Vu

 

for each .Xx∈  
 

Theorem 4.13. Let ),(),(: στ YXf → is a fuzzy completely 
weakly e -irresolute surjective function and X  is fuzzy com-
pact space, then Y  is fuzzy e -compact. 
Proof. Let }:{ Λ∈ααV be any fuzzy e -open cover of .Y  

Then }:)({ 1 Λ∈− ααVf  is a fuzzy open cover of .X Since 

X  is fuzzy compact there exists a finite subfamily 

},...,2,1:)(1 niVf =−
α of }:)({ 1 Λ∈− ααVf which covers 

.X   Hence, Y  is fuzzy e -compact. 
 

Corollary 4.14. Let ),(),(: στ YXf → is fuzzy completely 
weakly e  –irresolute surjective function and X  is fuzzy 
compact space, then Y  is fuzzy e -closed. 

 
Definition 4.15. Two non-zero fuzzy sets A and B  in X  are 
said to be separated [13] (resp. fuzzy e -separated) if 

)(BClqA and )(AClqB  (resp. )(BCleqA and 

)(AeClqB ). 
 

Definition 4.16. A fuzzy topological space X  is said to be 
fuzzy connected [14] (resp. fuzzy e -connected) if it cannot be 
expressed as the union of two fuzzy separated (resp. fuzzy e -
separated) sets. 

 
Lemma 4.17. Two non-zero fuzzy sets A  and B  are fuzzy e -
separated if and only if there exist two fuzzy e -open sets U  
and V such that VqAVBUA ,, ≤≤ and .UqB  

 
Theorem 4.18. Let ),(),(: στ YXf → is fuzzy completely 

weakly e –irresolute surjective function. If U  is a fuzzy con-
nected subset in ,X  then )(Uf is fuzzy e -connected in Y  . 

Proof. Suppose that )(Uf is not e -connected in .Y  Then 

there exist fuzzy e -separated subsets G and H  in .Y  such 
that .)( HGUf ∨=  By Lemma 4.1., thereexist fuzzy e -open 

subsets V  and W such that WqGWHVG ,, ≤≤  and 

VqH . Since f  is fuzzy complete weakly e  -irresolute, 

)(1 Gf − and )(1 Hf − are fuzzy open in X  and 

)()()())(( 1111 HfGfHGfUffU −−−− ∨=∨== . It is 

clear that )(1 Gf − and )(1 Hf − are fuzzy separated in X . 

Therefore, U  is not fuzzy connected in .X  
 

Corollary 4.19. Let ),(),(: στ YXf →  be a fuzzy complete-
ly weakly e  –irresolute surjective function. If U  is a fuzzy 
connected subset in ,X  then )(Uf  is also fuzzy e -
connected. 

 
Theorem 4.20. A function YXf →:  is fuzzy completely 

weakly e  -irresolute if the graph function XXXg ×→: , 

defined by ))(,()( xgxxg =  for each Xx∈  is fuzzy com      
pletely weakly e  -irresolute . 
Proof. Let V  be any fuzzy e -open set of Y  . Then V×1  is a 
fuzzy e  -open set of YX ×  . Since g  is fuzzy completely e  

-irresolute, )1()( 11 VgVf ×= −−  is fuzzy regular open in X . 

Thus f  is fuzzy completely weakly e -irresolute. 
 

Theorem 4.21. If ),(),(: στ YXf →  is fuzzy completely 

weakly e –irresolute injective function and Y  is fuzzy e  - 1T  

then X  is fuzzy Hausdorff. 
Proof. Let yx,  be any two distinct points of .X  Since f is 

injective, we have )()( yfxf ≠ . Since Y  is fuzzy e  - 2T  , 

there exists V and W  are e  -open sets in .Y  such that 

.0=∧WV  Since f  is fuzzy completely weakly e -

irresolute, there exists fuzzy open sets G  and H  in X  such 
that VGf ≤)( and .)( WHf ≤  Hence we obtain 

.0=∧ HG  This shows that X  is fuzzy Hausdorff. 
 

Theorem 4.22. If a function YXf →: is a fuzzy completely 
weakly e  –irresolute surjection and X  is fuzzy connected, 
then Y  is fuzzy e  -connected. 
Proof Suppose that Y  is not fuzzy e -connected. There exists 
non empty fuzzy e  -open sets V  and W  of Y  such that 

WVY ∨= . Since f is fuzzy completely weakly e  -irresolute 
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)(1 Vf − and )(1 Wf − are fuzzy open sets and 
).()( 11 WfVfX −− ∨=  This shows that X is not fuzzy con-

nected. This is a contradiction. 

CONCLUSION  
We have defined and proved basic properties of Fuzzy Com-
pletely e -Irresolute Functions and Fuzzy Completely Weakly 
e -Irresolute Function. Many results have been established to 
show how far topological structures are preserved by these e -
Irresolute Functions. We also have provided examples where 
such properties fail to be preserved. 
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